Noninvasive functional optical spectroscopy of human breast tissue.

نویسندگان

  • N Shah
  • A Cerussi
  • C Eker
  • J Espinoza
  • J Butler
  • J Fishkin
  • R Hornung
  • B Tromberg
چکیده

Near infrared diffuse optical spectroscopy and diffuse optical imaging are promising methods that eventually may enhance or replace existing technologies for breast cancer screening and diagnosis. These techniques are based on highly sensitive, quantitative measurements of optical and functional contrast between healthy and diseased tissue. In this study, we examine whether changes in breast physiology caused by exogenous hormones, aging, and fluctuations during the menstrual cycle result in significant alterations in breast tissue optical contrast. A noninvasive quantitative diffuse optical spectroscopy technique, frequency-domain photon migration, was used. Measurements were performed on 14 volunteer subjects by using a hand-held probe. Intrinsic tissue absorption and reduced scattering parameters were calculated from frequency-domain photon migration data. Wavelength-dependent absorption (at 674, 803, 849, and 956 nm) was used to determine tissue concentration of oxyhemoglobin, deoxyhemoglobin, total hemoglobin, tissue hemoglobin oxygen saturation, and bulk water content. Results show significant and dramatic differences in optical properties between menopausal states. Average premenopausal intrinsic tissue absorption and reduced scattering values at each wavelength are 2.5- to 3-fold higher and 16-28 % greater, respectively, than absorption and scattering for postmenopausal subjects. Absorption and scattering properties for women using hormone replacement therapy are intermediate between premenopausal and postmenopausal populations. Physiological properties show differences in mean total hemoglobin (7.0 microM, 11.8 microM, and 19.2 microM) and water concentration relative to pure water (10.9 %, 15.3 %, and 27.3 %) for postmenopausal, hormone replacement therapy, and premenopausal subjects, respectively. Because of their unique, quantitative information content, diffuse optical methods may play an important role in breast diagnostics and improving our understanding of breast disease.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sources of absorption and scattering contrast for near-infrared optical mammography.

RATIONALE AND OBJECTIVES Near-infrared (NIR) diffuse optical spectroscopy and imaging may enhance existing technologies for breast cancer screening, diagnosis, and treatment. NIR techniques are based on sensitive, quantitative measurements of functional contrast between healthy and diseased tissue. In this study, the authors quantified the origins of this contrast in healthy breasts. MATERIAL...

متن کامل

In vivo absorption, scattering, and physiologic properties of 58 malignant breast tumors determined by broadband diffuse optical spectroscopy.

Diffuse optical imaging (DOI) may be a beneficial diagnostic method for women with mammographically dense breast tissue. In order to evaluate the utility of DOI, we are developing broadband diffuse optical spectroscopy (DOS) to characterize the functional origins of optical signals in breast cancer patients. Broadband DOS combines multifrequency intensity-modulated and continuous-wave near-infr...

متن کامل

Noninvasive assessment of breast cancer risk using time-resolved diffuse optical spectroscopy.

Breast density is a recognized strong and independent risk factor for breast cancer. We propose the use of time-resolved transmittance spectroscopy to estimate breast tissue density and potentially provide even more direct information on breast cancer risk. Time-resolved optical mammography at seven wavelengths (635 to 1060 nm) is performed on 49 subjects. Average information on breast tissue o...

متن کامل

Quantitative Comparison of Analytical solution and Finite Element Method for investigation of Near-Infrared Light Propagation in Brain Tissue Model

Introduction: Functional Near-Infrared Spectroscopy (fNIRS) is an imaging method in which light source and detector are installed on the head; consequently, re-emission of light from human skin contains information about cerebral hemodynamic alteration. The spatial probability distribution profile of photons penetrating tissue at a source spot, scattering into the tissue, and being released at ...

متن کامل

Monitoring neoadjuvant chemotherapy in breast cancer using quantitative diffuse optical spectroscopy: a case study.

Presurgical chemotherapy is widely used in the treatment of locally advanced breast cancer. Monitoring the response to therapy can improve survival and reduce morbidity. We employ a noninvasive, near-infrared method based on diffuse optical spectroscopy (DOS) to quantitatively monitor tumor response to neoadjuvant chemotherapy. DOS was used to monitor tumor response in one patient with locally ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 98 8  شماره 

صفحات  -

تاریخ انتشار 2001